Automatic Video-Object Segmentation for MPEG-4 Coding and Object-Behaviour Analysis

Dirk Farin, Wolfgang Effelsberg
Gerald Kühne, Stephan Kopf, Thomas Haenselmann

Contact address:
Dirk Farin
University of Mannheim
Dept. of Computer Science IV
L 15.16, 68131 Mannheim, Germany
farin@informatik.uni-mannheim.de

Introduction

- Motivation: separate video sequence into video objects.

Applications:
- MPEG-4 sprite coding
 - higher coding efficiency (background is only transmitted once)
 - background replacement
- behaviour analysis
Segmentation and Classification Overview

Segmentation Algorithm

1. short term prediction (feature based)
 - corner extraction
 - robust motion estimation (LTS)
2. long term prediction (dense)
 - gradient descent
3. moving object(s) removal
 - e.g., temporal median filtering
4. differencing
5. regularization
Presentation Outline

- automatic segmentation
 - camera motion model
 - corner feature extraction
 - feature-based motion estimation
 - dense motion estimation
 - background mosaic reconstruction
 - background subtraction
 - shape regularization with Markov Random Fields
- MPEG-4 coding application
- Object behaviour analysis
 - object silhouette description
 - matching to behaviour model

Camera Motion: Motion Model 1

Assumption: video background is planar

Choose coordinate system such that background plane is located at z=0.

Using homogeneous coordinates, the projection from the background plane to the image plane is:

\[
\begin{pmatrix}
x' \\
y' \\
w
\end{pmatrix} =
\begin{pmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
0 \\
1
\end{pmatrix}
\]

\[H_i\]
Camera Motion: Motion Model 2

Transformation between two input frames:

\[
H_y = H_i H_i^{-1} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix}
\]

\[
H_y = H_0 / h_{33} = \begin{pmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ p_x & p_y & 1 \end{pmatrix}
\]

and we can write explicitly

\[
x' = \frac{a_{11}x + a_{12}y + t_x}{p_x x + p_y y + 1},
\]

\[
y' = \frac{a_{21}x + a_{22}y + t_y}{p_x x + p_y y + 1}.
\]

- Motion model for MPEG-4 GMC, sprite warping.
- Compatible motions:
 - planar background, arbitrary camera motion, or
 - rotating/zooming camera, arbitrary background depth.

Camera Motion: Motion Estimation Principle

First phase: **feature-based** motion estimation
- short term prediction
 - motion between successive frames
- can handle large displacements
- robust estimation, insensitive to local minima
- fast approximate solution

Second phase: **dense** motion estimation
- long term prediction
 - registration to background mosaic
 - prevents error accumulation
- locks to local minimum
- accurate estimation (sub-pixel accuracy)
Presentation Outline

- automatic segmentation
 - camera motion model
 - corner feature extraction
 - feature-based motion estimation
 - dense motion estimation
- background mosaic reconstruction
- background subtraction
 - shape regularization with Markov Random Fields
- MPEG-4 coding application
- Object behaviour analysis
 - object silhouette description
 - matching to behaviour model

Corner Localization for Reliable Motion Estim.

- No motion information can be obtained for regions with low texture.

- Along edges, only one motion-vector component is reliable (perpendicular to edge).

- Only use motion-vectors located at „corners“.
 - strong texture variation in two directions
Gradient-Vector Distribution Examples

- y-component of gradient-vector
- x-component of gradient-vector

Principal axes of gradient-vector distribution

- Compute center-weighted correlation matrix of gradient-vector components.
 \[
 C = \begin{pmatrix}
 \sum_{i \in N(p)} w(i) g_x(i) g_x(i) & \sum_{i \in N(p)} w(i) g_x(i) g_y(i) \\
 \sum_{i \in N(p)} w(i) g_y(i) g_x(i) & \sum_{i \in N(p)} w(i) g_y(i) g_y(i)
 \end{pmatrix}
 \]
- Greater Eigenvector points to principal gradient direction.

Gaussian weighting kernel
pixel neighborhood
gradient-vector components
Heading for real-time MPEG-4 encoding:
the segmentation problem

Texture Classification using Eigenvalues

corner-texture response-function:
\[\lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2 = \text{Det}(C) - k \cdot \text{Tr}(C)^2 > \text{thres}. \]

Detected Corner Features: Results

- Extract local maxima of corner response function:

 ![Results](image1.png) ![Results](image2.png)
Compute Corner-Feature Correspondences

- Cross-correlate small windows around features,
- sort feature-pairs according to decreasing correlation,
- establish correspondences if both features are not assigned yet. ("Highest Confidence First" - principle)

Result:
sparse frame-to-frame motion-vector field

Reliable motion-vectors!

Parametric Motion-Estimation

- Each correspondence gives a set of data \((x, y, x', y')\).
- Stack the equations obtained from all the data to get an overdetermined equation system

\[
x' = \frac{a_{11}x + a_{12}y + t_x}{p_x + p_y + 1}, \quad y' = \frac{a_{21}x + a_{22}y + t_y}{p_x + p_y + 1}.
\]

- Solve in the least-squares sense using, e.g., SVD.
Parametric Motion Estimation

- Least-squares fitting of motion-model to vectors does not yield good results:

- Separation of background-motion vectors and foreground-object motion is required:

Robust Background-Motion Estimation 1

- Assume that background-motion is the **dominant** motion.
- Use robust regression algorithm (RANSAC, LMedS, ...)
 - robustness against outliers (here: foreground motion)
- we used
 - **Least Trimmed Squares (LTS).**
- LTS minimizes sum of squared distances, but only considers the best-fitting fraction of data.
Robust Background-Motion Estimation 2

Repeat several times:
- randomly select four correspondences to initialize model,
- calculate all model residuals, sort them,
- refine model using LS over best-fitting data.
Choose best model.

Presentation Outline

- automatic segmentation
 - camera motion model
 - corner feature extraction
 - feature-based motion estimation
 - dense motion estimation
- background mosaic reconstruction
- background subtraction
 - shape regularization with Markov Random Fields
- MPEG-4 coding application
- Object behaviour analysis
 - object silhouette description
 - matching to behaviour model
Long-term Prediction: why?

- Motion-model is used to construct background-mosaic over long sequences.
- Errors accumulate to alignment errors.

Long-term Prediction: Principle

- Dense registration of input frame to background mosaic.
 \[
 \min_{\theta} E_\theta = \min_{\theta} \sum_{i=(x,y)} (I'(x', y') - I(x, y))^2
 \]
- Solve using Levenberg-Marquardt gradient descent.
- A robust error function can be used to improve background registration accuracy.
 - Residuals from foreground objects do not disturb estimated motion-model.
 \[
 \gamma(e) = \begin{cases}
 e^2 & \text{for } |e| < t \\
 t^2 & \text{else.}
 \end{cases}
 \]
Long-term Prediction: Results

No alignment errors visible.

Background-Mosaic Reconstruction

- Combine all input images into a single panoramic background view.
- Apply a pixel-wise temporal median filter to remove moving foreground objects.
- Better algorithms for background reconstruction have been developed (submitted to ICIP-2003).
Background Subtraction

- Compute pixel-difference between background image and motion-compensated input image.

- A simple threshold on pixel differences produces too much pixel noise:

Bkg. Subtraction: Shape Regularization

- Model MRF using second-order Gibbs energies:

\[
P(f) = Z^{-1} \cdot e^{-\frac{1}{T} U(f)}
\]

\[
U(f) = \sum_{p} V_1(f_p) + \sum_{p \in N(p)} V_2(f_p, f_{p'})
\]

- \(V_1 \): foreground/background decision

\[
V_1(f_p) = \begin{cases}
\beta \cdot e^{-d(p)\mu} & \text{for } f_p = \text{foreground}, \text{ and} \\
\beta \cdot (1.0 - e^{-d(p)\mu}) & \text{for } f_p = \text{background}.
\end{cases}
\]

- \(V_2 \): shape regularization

\[
V_2(f_p, f_{p'}) = \begin{cases}
-\mu & \text{if } f_p = f_{p'} \\
\mu & \text{if } f_p \neq f_{p'}
\end{cases}
\]
Presentation Outline

- automatic segmentation
 - camera motion model
 - corner feature extraction
 - feature-based motion estimation
 - dense motion estimation
- background mosaic reconstruction
- background subtraction
 - shape regularization with Markov Random Fields

- MPEG-4 coding application
- Object behaviour analysis
 - object silhouette description
 - matching to behaviour model

MPEG-4 Sprite Coding: Reduced Bit-rate

- background sprite with current view parameters
- reconstructed view at MPEG decoder
- MPEG-4 video object plane (VOP)
- reconstructed video
MPEG-4: Background Replacement

- different background image
- reconstructed view at MPEG decoder
- MPEG-4 video object plane (VOP)
- reconstructed video

Presentation Outline

- automatic segmentation
 - camera motion model
 - corner feature extraction
 - feature-based motion estimation
 - dense motion estimation
- background mosaic reconstruction
- background subtraction
 - shape regularization with Markov Random Fields
- MPEG-4 coding application
 - Object behaviour analysis
 - object silhouette description
 - matching to behaviour model
Object Shape Description

- Describe object silhouette with *Curvature Scale Space* (CSS) descriptors (as defined in MPEG-7).
- Mark inflection points over path length.
- Iteratively smooth boundary until no inflection points remain.
- Compare peaks in CSS diagram for shape comparison.

Example Behavior Model

Typical object silhouettes and their temporal relationship:
Behaviour Analysis from Video Sequence

- Object silhouettes from automatic segmentation are matched using dynamic-programming approach

Example Results
Conclusions

- Automatic Video-Object Segmentation
 - pan/tilt/zoom camera model
 - two step motion estimation
 - feature-based short-term prediction
 - dense long-term prediction
 - segmentation based on background subtraction
- MPEG-4 sprite coding
- Object behaviour analysis
 - describe shapes by MPEG-7 CSS descriptors
 - match sequence of shape descriptors to behaviour model